题目名称 | 3882. [省选 2023]填数游戏 |
---|---|
输入输出 | game.in/out |
难度等级 | ★★★☆ |
时间限制 | 2000 ms (2 s) |
内存限制 | 1024 MiB |
测试数据 | 25 |
题目来源 | syzhaoss 于2023-04-05加入 |
开放分组 | 全部用户 |
提交状态 | |
分类标签 | |
分享题解 |
通过:0, 提交:0, 通过率:0% | |||
关于 填数游戏 的近10条评论(全部评论) |
---|
众所周知,Alice 和 Bob 是一对好朋友。今天,他们约好一起玩游戏。
一开始,他们各自有一张空白的纸条。接下来,他们会在纸条上依次写 $n$ 个 $[1,m]$ 范围内的正整数。等 Alice 写完,Bob 在看到 Alice 写的纸条之后开始写他的纸条。
Alice 需要保证她写下的第 $i$ 个数在集合 $S_{i}$ 中,Bob 需要保证他写下的第 $i$ 个数在集合 $T_{i}$ 中。题目保证 $1 \leq\left|S_{i}\right|,\left|T_{i}\right| \leq 2$ 。
Alice 喜欢相同,因此,她希望她写下的数与 Bob 写下的数对应位置相同的个数尽量多。Bob 喜欢不同,因此,他希望他写下的 $n$ 个数 $b_{1}, \cdots, b_{n}$ 互不相同。在此基础上,Bob 希望他写下的数与 Alice 写下的数对应位置相同的个数尽量少。
即设 Alice 写下的数为 $a_{1}, \cdots, a_{n}$,Bob 写下的数为 $b_{1}, \cdots, b_{n}$,记 $X$ 为满足 $1 \leq i \leq n, a_{i}=b_{i}$ 的下标 $i$ 的个数,则
·Alice 希望最大化 $X,$
·Bob 在保证 $b_{1}, \cdots, b_{n}$ 互不相同的前提下希望最小化 $X$。
你首先想知道 Bob 能否保证他写下的 $n$ 个数互不相同。如果 Bob 能够做到,你想知道在双方均采取最优策略的前提下 $X$ 的值会是多少。
本题有多组测试数据。
输入的第一行包含一个正整数 $T$,表示测试数据组数。
接下来包含 $T$ 组数据,每组数据的格式如下:
第一行包含两个正整数 $n,m$,表示纸条上需要写的数的个数和数的值域。
接下来 $n$ 行,每行输入的第一个整数为 $\left|S_{i}\right|$ 表示集合 $S_{i}$ 的元素个数,接下来输入 $\left|S_{i}\right|$ 个正整数描述 $S_{i}$ 中的元素。
接下来 $n$ 行,每行输入的第一个整数为 $\left|T_{i}\right|$ 表示集合 $T_{i}$ 的元素个数,接下来输入 $\left|T_{i}\right|$ 个正整数描述 $T_{i}$ 中的元素。
对于每组测试数据输出一行:若 Bob 无法做到他写下的 $n$ 个数互不相同,输出 `-1`;否则输出在双方均予取最优策略的前提下 $X$ 的值。
1 3 4 1 3 2 1 2 2 3 4 2 1 2 2 2 3 2 3 4
1
在这组样例中,$S_{1}=\{3\}, S_{2}=T_{1}=\{1,2\}, S_{3}=T_{3}=\{3,4\}, T_{2}=\{2,3\}$。Alice 的填法有 $4$ 种,列举如下:
第一种:$a_{1}=3,a_{2}=1,a_{3}=3$。
第二种:$a_{1}=3,a_{2}=1,a_{3}=4$。
第三种:$a_{1}=3,a_{2}=2,a_{3}=3$。
第四种:$a_{1}=3,a_{2}=2,a_{3}=4$。
由于 Bob 必须保证他所填的数互不相同,所以他有以下填法:
第一种:$b_{1}=1,b_{2}=2,b_{3}=3$。
第二种:$b_{1}=2,b_{3}=3,b_{3}=4$。
第三种:$b_{1}=1,b_{2}=2,b_{3}=4$。
第四种:$b_{1}=1,b_{2}=3,b_{3}=4$。
若 Alice 选择第一种填法,则 Bob 为最小化 $X$,选择第二种填法,得到 $X=0$。
若 Alice 选择第二种填法,则 Bob 为最小化 $X$,选择第一种填法,得到 $X=0$。
若 Alice 选择第三种填法,则 Bob 为最小化 $X$,选择第一种填法,得到 $X=0$。
若 Alice 选择第四种填法,则 Bob 无论选择哪种填法,$X$ 均不小于 $1$。
因此,Alice 为最大化 $X$ 的值,她会选择第四种填法。
对于所有测试数据,保证:$1\leq T\leq 1000;1\leq n,m\leq 10^6;1\leq |S_i|,|T_i|\leq 2$;集合$S_i,T_i$都是$\{1,2,\cdots,m\}$的子集且集合内元素两两不同。
表格中 $\sum n,\sum m$ 分别表示同个测试点内所有测试数据的 $n$ 总和和 $m$ 总和。 $\sum n^{2}, \sum m^{2}, \sum n^{3}, \sum m^{3}$ 的含义类似。
特殊性质 A:对于任何 $1 \leq i \leq n,S_i$ 和 $T_i$ 互不相交,即 $S_i \cap T_i=\emptyset$。
特殊性质 B:$n \geq 3$,且对于任侏何 $1 \leq i<n, T_{1} =\{i,i+1\}$,且 $T_{n}=\{n,1\}$。
特殊性质 C:对于任何 $1 \leq i \leq n,|S_i|=1$。
特殊性质 D:对于任何 $1 \leq i \leq n,S_{i}=T_{i}$。
本题部分测试点读入规模较大,我们建议你采取效率较高的读入方式。
统一省选 2023 Day2 Task2