Gravatar
jacken
积分:98
提交:23 / 34

Pro3782  [CSP 2022S]策略游戏

这道题不止一种做法,我用的是其中一种:贪心+RMQ


## 贪心的思路:


### 1.小L如果有正有负,分为三种情况:


#### (1)小Q只有正,这种情况对小Q不利,小L选择最大的正数(这里包括0,下同),小Q被逼的死路一条,只有选择最小的正数可以尽量实得分更小。


#### (2)小Q只有负,这种情况也对小Q不利,由于负负得正,小L选择绝对值最大的负数(相当于最小的负数),小Q没办法,只好选择绝对值最小的负数(相当于最大的负数),可以尽量实得分更小。


#### (3)小Q有正有负,这种情况对小Q有利,为何?因为小L出正,小Q出负,小L出负,小Q出正,小L不管怎么出,小Q都有办法使得它<=0,小L只能在出正或出负的情况选一个最小的,小L的第一个选择(正数),应选最小的正数,小Q就选最小的负数。小L的第二个选择(负数),应选最大的负数,小Q选最大的正数。


### 2.小L只有负,分为两种情况:


#### (1)小Q只有负,这种情况对小Q不利,由于负负得正,小L选择绝对值最大的负数(相当于最小的负数),小Q没办法,只好选择绝对值最小的负数(相当于最大的负数),可以尽量实得分更小。


#### (2)小Q只有正或有正有负,这种情况对小Q有利,小L没办法,选绝对值最小的负数(相当于最大的负数),小Q选择最大的正数。


### 3.小L只有正,分为两种情况:


#### (1)小Q只有正,这种情况对小Q不利,小L选择最大的正数,小Q选最小的正数。


#### (2)小Q只有负或有正有负,这种情况对小Q有利,小L没办法,只好选择最小的的正数,小Q选择绝对值最大的负数(相当于最小的负数)。


## 代码部分:


### 准备八个数组:fza,fza1,fzb,fzb1,ffa,ffa1,ffb,ffb1,分别代表小L正数最大值、小L正数最小值、小Q正数最大值、小Q正数最小值、小L负数最大值、小L负数最小值、小Q负数最大值、小Q负数最小值。


### 初始化:属于这个部分的(负数或正数)就直接赋值,否则是大的就-1e10,小的就1e10。


### 剩下的就按思路做。


### 代码:


#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N = 1e5;
int a[N];
int b[N];
int fza[N][20];
int fza1[N][20];
int fzb[N][20];
int fzb1[N][20];
int ffa[N][20];
int ffa1[N][20];
int ffb[N][20];
int ffb1[N][20];
int n,q,m;
signed main()
{
    scanf("%lld %lld %lld",&n,&m,&q);
    for(int i = 1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        fza[i][0] = a[i]>=0?a[i]:(int)-1e10;
        fza1[i][0] = a[i]>=0?a[i]:(int)1e10;
        ffa[i][0] = a[i]<0?a[i]:(int)-1e10;
        ffa1[i][0] = a[i]<0?a[i]:(int)1e10;
    }
    for(int i = 1;i<=m;i++)
    {
        scanf("%lld",&b[i]);
        fzb[i][0] = b[i]>=0?b[i]:(int)-1e10;
        fzb1[i][0] = b[i]>=0?b[i]:(int)1e10;
        ffb[i][0] = b[i]<0?b[i]:(int)-1e10;
        ffb1[i][0] = b[i]<0?b[i]:(int)1e10;
    }
    for(int i = 1;i<=log2(n);i++)
    {
        for(int j = 1;j<=n-(1<<i)+1;j++)
        {
            fza[j][i] = max(fza[j][i-1],fza[j+(1<<(i-1))][i-1]);
            fza1[j][i] = min(fza1[j][i-1],fza1[j+(1<<(i-1))][i-1]);
            ffa[j][i] = max(ffa[j][i-1],ffa[j+(1<<(i-1))][i-1]);
            ffa1[j][i] = min(ffa1[j][i-1],ffa1[j+(1<<(i-1))][i-1]);
        }
    }
    for(int i = 1;i<=log2(m);i++)
    {
        for(int j = 1;j<=m-(1<<i)+1;j++)
        {
            fzb[j][i] = max(fzb[j][i-1],fzb[j+(1<<(i-1))][i-1]);
            fzb1[j][i] = min(fzb1[j][i-1],fzb1[j+(1<<(i-1))][i-1]);
            ffb[j][i] = max(ffb[j][i-1],ffb[j+(1<<(i-1))][i-1]);
            ffb1[j][i] = min(ffb1[j][i-1],ffb1[j+(1<<(i-1))][i-1]);
        }
    }
    for(int i = 1;i<=q;i++)
    {
        int la,ra,lb,rb;
        scanf("%lld %lld %lld %lld",&la,&ra,&lb,&rb);
        int kl = log2(ra-la+1);
        int num;
        int kr = log2(rb-lb+1);
        if(max(fza[la][kl],fza[ra-(1<<kl)+1][kl])!=(int)-1e10&&max(ffa[la][kl],ffa[ra-(1<<kl)+1][kl])!=(int)-1e10)
        {
            if(max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr]) == (int)-1e10)
            {
                num = max(fza[la][kl],fza[ra-(1<<kl)+1][kl])*min(fzb1[lb][kr],fzb1[rb-(1<<kr)+1][kr]);
            }
            if(max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr]) == (int)-1e10)
            {
                num = min(ffa1[la][kl],ffa1[ra-(1<<kl)+1][kl])*max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr]);
            }
            if(max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr])!=(int)-1e10&&max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr])!=(int)-1e10)
            {
                int L1 = min(fza1[la][kl],fza1[ra-(1<<kl)+1][kl])*min(ffb1[lb][kr],ffb1[rb-(1<<kr)+1][kr]),L2 = max(ffa[la][kl],ffa[ra-(1<<kl)+1][kl])*max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr]);
                num = max(L1,L2);
            }
        }
        if(max(fza[la][kl],fza[ra-(1<<kl)+1][kl]) == (int)-1e10&&max(ffa[la][kl],ffa[ra-(1<<kl)+1][kl])!=(int)-1e10)
        {
            if(max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr]) == (int)-1e10&&max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr])!=(int)-1e10)
            {
                num = min(ffa1[la][kl],ffa1[ra-(1<<kl)+1][kl])*max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr]);
            }
            else
            {
                num = max(ffa[la][kl],ffa[ra-(1<<kl)+1][kl])*max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr]);
            }
        }
        if(max(fza[la][kl],fza[ra-(1<<kl)+1][kl])!=(int)-1e10&&max(ffa[la][kl],ffa[ra-(1<<kl)+1][kl]) == (int)-1e10)
        {
            if(max(fzb[lb][kr],fzb[rb-(1<<kr)+1][kr])!=(int)-1e10&&max(ffb[lb][kr],ffb[rb-(1<<kr)+1][kr]) == (int)-1e10)
            {
                num = max(fza[la][kl],fza[ra-(1<<kl)+1][kl])*min(fzb1[lb][kr],fzb1[rb-(1<<kr)+1][kr]);
            }
            else
            {
                num = min(fza1[la][kl],fza1[ra-(1<<kl)+1][kl])*min(ffb1[lb][kr],ffb1[rb-(1<<kr)+1][kr]);
            }
        }
        printf("%lld\n",num);
    }
    return 0;
}

2024-01-06 19:03:41    
我有话要说
暂无人分享评论!