|
$题目大意$ ${求}\sum_{i=1}^{n}\sum _{j=1}^{m}{lcm(i,j)} {且} 1\le n,m\le 1e7$ ${正解:}$ ${有}{lcm(i,j)=\frac{i\cdot j}{\gcd(i,j)}}$ ${所以原式为:}$ $ans(n,m)=\sum_{i=1}^{n}\sum _{j=1}^{m}{\frac{i\cdot j}{\gcd(i,j)}}$ $~\qquad\qquad =\sum_{i=1}^{n}\sum _{j=1}^{m}{ \sum_{d\mid i,d\mid j,\gcd(\frac{i}{d},\frac{j}{d})}{}{\frac{i\cdot j}{d}}}$ ${现在需要将d给提出来,默认}{n\le m,}{我们设}i=i'\cdot d,j=j'\cdot d,{则}i'=\frac{i}{d},j'=\frac{j}{d},将i,j替换进上式得:$ $ans(n,m)=\sum_{d=1}^{\min(n,m)}{\sum_{i'=1}^{\left \lfloor \frac{n}{d} \right \rfloor}{\sum_{j'=1}^{\left \lfloor \frac{m}{d} \right \rfloor}{[\gcd(i',j')=1]\cdot d\cdot i'\cdot j'}}}$ $~\qquad\qquad=\sum_{d=1}^{n}{d\cdot\sum_{i=1}^{\left \lfloor \frac{n}{d} \right \rfloor}{\sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor}{[\gcd(i,j)=1]\cdot i\cdot j}}}$ ${接着将d后面的部分再提出来考虑,化简枚举约数,运用莫比乌斯反演:} [\gcd(i,j)=1]=\sum_{d\mid gcd}{\mu{(d)}}:$ ${设} \ {g(n,m)}=\sum_{i=1}^{n}{\sum_{j=1}^{m}{[\gcd(i,j)=1]\cdot i\cdot j}}$ $~\qquad\qquad=\sum_{d=1}^{n}{\sum_{d\mid i}^{n}{\sum_{d\mid j}^{m}{\mu(d)\cdot i\cdot j}}}$ ${再设}\ i=i' \cdot d,j=j' \cdot d \ {带入,将}\mu{提出来}$ ${即}\ g(n,m)=\sum_{d=1}^{n}{\mu(d)}\cdot{d^{2}\cdot{\sum_{i=1}^{\left\lfloor \frac{n}{d} \right \rfloor}{\sum_{j=1}^{\left \lfloor \frac{m}{d} \right \rfloor}{i\cdot j}}}}$ $~\qquad\qquad = \sum_{d=1}^{n}{\mu(d)}\cdot{d^{2}}\cdot\frac{{\left \lfloor \frac{n}{d} \right \rfloor}\cdot ({\left \lfloor \frac{n}{d} \right \rfloor}+1)\cdot {\left \lfloor \frac{m}{d} \right \rfloor}\cdot({\left \lfloor \frac{m}{d} \right \rfloor}+1)}{4}$ ${最后将g(n,m)带入ans(n,m)中得:}$ $ans(n,m)=\sum_{d=1}^{n}{d}\cdot{g(\left\lfloor \frac{n}{d}\right\rfloor,\left\lfloor \frac{m}{d}\right\rfloor)}$ ${用数论分块求出来}~{g(n,m)}~{再用数论分块求出来}~{ans(n,m),}~{就在{\Theta(n+m)内}}{得到答案了}~{(∠・ω< )⌒★}$
题目1886 [国家集训队 2011] Crash的数字表格
AAAAAAAAAAAAAAAAAAAA
![]()
2025-05-24 21:56:25
|