记录编号 |
317876 |
评测结果 |
AAAAAAAAAAAAAAAAAA |
题目名称 |
遥远的国度 |
最终得分 |
100 |
用户昵称 |
小e |
是否通过 |
通过 |
代码语言 |
C++ |
运行时间 |
2.233 s |
提交时间 |
2016-10-08 17:09:25 |
内存使用 |
8.69 MiB |
显示代码纯文本
#include "cstdio"
#include "cstring"
#include "algorithm"
using namespace std;
const int maxnumber = 100100;
int n, m, num;
struct Edge
{
int to, next;
}edges[maxnumber << 1];
int head[maxnumber], tot;
int value[maxnumber];
int depth[maxnumber], size[maxnumber], fa[maxnumber], son[maxnumber];
int top[maxnumber], dfn[maxnumber], id[maxnumber], end[maxnumber], dfsclock;
// end[i]: 点i子树的终止位置(dfn序)
int minn[maxnumber << 2], lazy[maxnumber << 2];
int capital;
inline void Read(int& a)
{
a = 0;
char ch = getchar();
while(ch < '0' || ch > '9') ch = getchar();
while(ch >= '0' && ch <= '9'){
a = a * 10 + ch - '0';
ch = getchar();
}
}
inline void AddEdge(const int& from, const int& to)
{
edges[++tot].to = to;
edges[tot].next = head[from];
head[from] = tot;
}
void Segment_Tree_Build(const int& l, const int& r, const int& rt)
{
if(l == r){
minn[rt] = value[id[l]];
return;
}
const int mid = (l + r) >> 1, lch = rt << 1, rch = lch | 1;
Segment_Tree_Build(l, mid, lch);
Segment_Tree_Build(mid+1, r, rch);
minn[rt] = min(minn[lch], minn[rch]);
}
inline void PushDown(const int& rt)
{
const int lch = rt << 1, rch = lch | 1;
minn[lch] = lazy[rt]; minn[rch] = lazy[rt];
lazy[lch] = lazy[rt]; lazy[rch] = lazy[rt];
lazy[rt] = 0;
}
void Segment_Tree_Change(const int& l, const int& r, const int& rt, const int& s, const int& t)
{
if(l >= s && r <= t){
minn[rt] = num;
lazy[rt] = num;
return;
}
if(lazy[rt]) PushDown(rt);// ************************************************************************
const int mid = (l + r) >> 1, lch = rt << 1, rch = lch | 1;
if(t <= mid) Segment_Tree_Change(l, mid, lch, s, t);
else if(s >= mid + 1) Segment_Tree_Change(mid+1, r, rch, s, t);
else{
Segment_Tree_Change(l, mid, lch, s, mid);
Segment_Tree_Change(mid+1, r, rch, mid+1, t);
}
minn[rt] = min(minn[lch], minn[rch]);
}
int Segment_Tree_Min(const int& l, const int& r, const int& rt, const int& s, const int& t)
{
if(l >= s && r <= t) return minn[rt];
if(lazy[rt]) PushDown(rt);
const int mid = (l + r) >> 1, lch = rt << 1, rch = lch | 1;
if(t <= mid) return Segment_Tree_Min(l, mid, lch, s, t);
else if(s >= mid + 1) return Segment_Tree_Min(mid+1, r, rch, s, t);
return min(Segment_Tree_Min(l, mid, lch, s, mid), Segment_Tree_Min(mid+1, r, rch, mid+1, t));
}
void DFS1(const int& a)
{
size[a] = 1;
for(int i = head[a]; i; i = edges[i].next){
int to = edges[i].to;
if(to == fa[a]) continue;
fa[to] = a;
depth[to] = depth[a] + 1;
DFS1(to);
size[a] += size[to];
if(size[to] > size[son[a]]) son[a] = to;
}
}
void DFS2(const int& a, const int& tp)
{
top[a] = tp;
dfn[a] = ++dfsclock;
id[dfsclock] = a;
if(son[a]) DFS2(son[a], tp);
for(int i = head[a]; i; i = edges[i].next){
int to = edges[i].to;
if(to == fa[a] || to == son[a]) continue;
DFS2(to, to);
}
end[a] = dfsclock;
}
inline void Change(int s, int t)
{
int f1 = top[s], f2 = top[t];
while(f1 != f2){
if(depth[f1] < depth[f2]){
swap(f1, f2);
swap(s, t);
}
Segment_Tree_Change(1, n, 1, dfn[f1], dfn[s]);
s = fa[f1];
f1 = top[s];
}
if(depth[s] < depth[t]) swap(s, t);
Segment_Tree_Change(1, n, 1, dfn[t], dfn[s]);
}
inline int LCA(int s, int t)
{
int f1 = top[s], f2 = top[t];
while(f1 != f2){
if(depth[f1] < depth[f2]){
swap(f1, f2);
swap(s, t);
}
s = fa[f1];
f1 = top[s];
}
if(depth[s] < depth[t]) swap(s, t);
return t;
}
inline int Query(const int& rt)
{
// rt与首都的位置关系:
// 1. 首都就是rt, 查询整棵树
// 2. 首都在rt上面或者首都与rt在互不影响的两棵子树上, 查询rt的子树
// 3. 首都在rt下面, 先找到首都在rt的哪个儿子上, 查询除了这个儿子的子树外的所有其他点
if(rt == capital){
// printf("CAPITAL ");
return Segment_Tree_Min(1, n, 1, 1, n);
}
if(LCA(rt, capital) != rt){
// printf("CAPITAL:%d rt:%d size:%d ans:", dfn[capital], dfn[rt], size[rt]);
return Segment_Tree_Min(1, n, 1, dfn[rt], dfn[rt]+size[rt]-1);
}
for(int i = head[rt]; i; i = edges[i].next){
int to = edges[i].to;
if(to == fa[rt]) continue;
if(dfn[to] <= dfn[capital] && dfn[capital] <= dfn[to] + size[to] - 1){
// printf(" start: %d capital:%d end:%d ans: ", dfn[to], dfn[capital], dfn[to] + size[to] - 1);
if(dfn[to]+size[to] > n) return Segment_Tree_Min(1, n, 1, 1, dfn[to]-1);
else return min(Segment_Tree_Min(1, n, 1, 1, dfn[to]-1), Segment_Tree_Min(1, n, 1, dfn[to]+size[to], n));
}
}
}
#define SUBMIT
int main()
{
#ifdef SUBMIT
freopen("bbbbb.in", "r", stdin); freopen("bbbbb.out", "w", stdout);
#endif
Read(n); Read(m);
int from, to, type, s, t, rt;
for(int i = 1; i < n; i++){
Read(from); Read(to);
AddEdge(from, to);
AddEdge(to, from);
}
for(int i = 1; i <= n; i++) Read(value[i]);
Read(capital);
depth[capital] = 1;
DFS1(capital);
DFS2(capital, capital);
Segment_Tree_Build(1, n, 1);
for(int i = 1; i <= m; i++){
Read(type);
if(type == 1) Read(capital);
else if(type == 2){
Read(s); Read(t); Read(num);
Change(s, t);
}
else{
Read(rt);
printf("%d\n", Query(rt));
}
}
#ifndef SUBMIT
printf("\n----------\n");
getchar(); getchar();
#else
fclose(stdin); fclose(stdout);
#endif
return 0;
}